MSW2T-2040-193/MSW2T-2041-193 SP2T Surface Mount High Power PIN Diode Switch #### **Features:** - Wide Operating Frequency Band: 50 MHz to 4 GHz - Surface Mount SP2T Switch 5mm x 8mm x 2.5mm - Industry Leading Average Power Handling 160W CW - High RF Peak Power >550W - Low Insertion Loss (< 0.25 dB) and High IIP3 (>65 dBm) - High Linearity - RoHS Compliant #### **Description:** The MSW2T-204X-193 series SP2T surface mount High Power PIN Diode switches are available in two operating frequency bands: MSW2T-2040-193 operates from 50 MHz to 1 GHz and MSW2T-2041-193 operates from 400 MHz to 4 GHz. The MSW2T-204X-193 series of high power switches leverage high reliability hybrid manufacturing processes which yield both superior RF and thermal characteristics performance compared to MMIC or Glass Carrier based technologies. The hybrid design approach permits precise PIN Diode selection to optimize RF performance while maintaining competitive cost targets. The small form factor (8mm x 5mm x 2.5mm) offers world class power handling, low insertion loss, and superior intermodulation performance exceeding all competitive technologies. The MSW204X-193 family of symmetrical switches are tailored to minimize Transmit to Antenna loss while maximizing Transmit to Receive isolation and to enable maximum flexibility as the designer can assign either port as Transmit Port and the other as the Receive Port. The extremely low thermal resistance of the hybrid assembly permits reliably handling up to 52 dBm CW power and up to 57 dBm peak RF incident power while operating at the T_{amb (MAX)} = +85°C. ## **Typical Applications:** - Radar T/R Modules - High Power Transmit/Receive Switching - Switch Bank Filters - Mil-Com Radios The MSW2T-204X-193 series of High Power SP2T switches are intended for use in high power, high reliability, mission critical applications from 50 MHz to 4 GHz. The manufacturing process has been proven through decades of extensive use in high reliability applications. ## **ESD and Moisture Sensitivity Level Rating:** The MSW2T-204X-193 family of SP2T switches are fully RoHS compliant and carry an ESD rating of Class 1C, Human Body Model (HBM) with a moisture sensitivity rating of MSL 1. #### MSW2T-204X-193 Schematic # MSW2T-2040-193 Electrical Specifications @ $Zo = 50\Omega$; Ta = +25°C | Parameter | Symbol | Test Condition | | Typ
Value | Max
Value | Units | |--|-----------------------|--|----|--------------|--------------|-------| | Frequency | F | | 50 | | 1,000 | MHz | | Insertion Loss | IL | Bias State 1: port J0 to J1
Bias State 2: port J0 to J2 | | 0.2 | 0.3 | dB | | Return Loss | RL | Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 | | 20 | | dB | | Isolation | ISO | Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 | | 50 | | dB | | CW Incident
Power (Note 2) | P _{inc} (CW) | Source & Load VSWR = 1.5:1 | | | 52 | dBm | | Peak Incident
Power (Note 2) | P _{inc} (Pk) | Source & Load VSWR = 1.5:1 Pulse width = 10 us, Duty Cycle = 1% | | | 57 | dB | | Switching Time | t _{SW} | 10% to 90% RF Voltage,
TTL rep rate = 100 kHz | | 2 | 3 | usec | | Input 3 rd Order
Intercept Point | IIP3 | F_1 =500 MHz, F_2 =510 MHz, P_1 = P_2 =10dBm Measured on path biased to low loss state | 60 | 65 | | dBm | ## MSW2T-2041-193 Electrical Specifications @ Zo = 50Ω ; Ta = +25°C | Parameter | Symbol | Test Condition | | Typ
Value | Max
Value | Units | |--|-----------------------|--|-----|--------------|--------------|-------| | Frequency | F | | 400 | | 4,000 | MHz | | Insertion Loss | IL | Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 | | 0.5 | 0.7 | dB | | Return Loss | RL | Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 | | 15 | | dB | | Isolation | ISO | Bias State 1: port J0 to J1 Bias State 2: port J0 to J2 | | 33 | | dB | | CW Incident
Power (Note 2) | P _{inc} (CW) | Source & Load VSWR = 1.5:1 | | | 52 | dBm | | Peak Incident
Power (Note 2) | P _{inc} (Pk) | Source & Load VSWR = 1.5:1 Pulse width = 10 us, Duty Cycle = 1% | | | 57 | dB | | Switching Time | t _{SW} | 10% to 90% RF Voltage,
TTL rep rate = 100 kHz | | 2 | 3 | usec | | Input 3 rd Order
Intercept Point | IIP3 | F_1 =500 MHz, F_2 =510 MHz, P_1 = P_2 =10dBm Measured on path biased to low loss state | 60 | 65 | | dBm | # MSW2T-204X-193 Absolute Maximum Ratings @ $T_A = +25$ °C (unless otherwise denoted) | Parameters | Conditions | Absolute Maximum Value | |--|--|------------------------| | Forward Current -Ant, Tx or Rx Port | | 250mA | | Forward Current – DC Bias Port | | 100mA | | Reverse Voltage – Tx or Rx Port | | 125V | | Reverse Voltage – DC Bias Port | | 125V | | Forward Diode Voltage | $I_F = 250 \text{mA}$ | 1.2V- | | Operating Temperature | | -65°C to + 125°C | | Storage Temperature | | -65°C to + 150°C | | Junction Temperature | | +175°C | | Assembly Temperature | | 260°C for 10 sec | | CW Incident Power Handling – J0-J1 or J0-J2 (Note 1) | Source & Load VSWR = 1.5:1,
$T_{CASE} = 85^{\circ}C$, cold switching | 52 dBm | | Peak Incident Power Handling – J0-J1 or J0-J2 (Note 1) | Source & Load VSWR = 1.5:1,
T _{CASE} = 85°C, cold switching,
Pulse Width = 10 us, Duty Cycle = 1% | 57 dBm | | Total Dissipated RF & DC Power (note 1) | T _{CASE} = 85°C, cold switching | 6 W | #### Notes: 1) Backside RF, DC and Thermal Ground area of device must be completely solder attached to RF circuit board vias for proper electrical and thermal circuit grounding. #### **Control Conditions Table** | | State 1 | State 2 | |----------------|-----------------------------------|------------------------------------| | Test Condition | J0-J1 in Low Insertion Loss | J0-J1 in Isolation | | rest Condition | J0-J2 in Isolation | J0-J2 in Low Insertion Loss | | B1 | V _{HIGH} , 0 mA | 0 V, -25 mA | | B2 | 0 V, -25 mA | V _{HIGH} (note 2), 0 mA | | J0 | ~0.9 V, +150 mA | ~0.9 V, +150mA | | J1 | 0 V, -150 mA | V _{HIGH} (note 2), +25 mA | | J2 | V _{HIGH} (note 2), 25 mA | 0 V, -150 mA | #### Notes - 1) Switching time from 50% TTL to 10% or 90% RF Voltage is a function of the PIN diode driver circuit performance as well as the characteristic of the PIN diode. An RC (current spiking network) is used on the driver circuit output to provide a large transient current spike to rapidly remove stored charge from the PIN diode's intrinsic layer. Typical component values are: R = 50 to 220Ω and C = 470 to 1,000 pF. - 2) PIN diode minimum reverse DC voltage (V_{HIGH}) is used to maintain high resistance in the OFF PIN diode state and is determined by RF frequency, incident power, duty cycle, characteristic impedance and VSWR as well by the characteristics of the PIN diode. The recommended minimum value of the reverse bias voltage (V_{HIGH}) value is provided in the Minimum Reverse Bias Voltage Table shown below. #### Control Truth Table for MSW2T-204X-193 $+V_{cc1} = 5V$ and $+V_{cc2} = 28V$ (unless otherwise noted) | Ant – Tx Path | Ant – Rx Path | Bias J1
(notes 1 & 2) | Bias J2
(notes 1 & 2) | B1 Bias
(notes 1 & 2) | B2 Bias
(notes 1 & 2) | |---------------|---------------|--------------------------|--------------------------|--------------------------|--------------------------| | Low Loss | Isolation | V = 0 V, | $V = V_{HIGH}$ | $V = V_{HIGH}$ | V = 0V | | | | I = -150 mA | I = +100 mA | I = 0 mA | I = -25 mA | | Isolation | Low Loss | $V = V_{HIGH}$ | V = 0 V, | V = 0 V, | V _{HIGH} +28 V | | | | I = +25 mA | I = -150 mA | I = -25 mA | I = 0 mA | #### Notes: ### **RF Bias Network Recommended Component Values** | Part Number | Operating
Frequency
(MHz) | DC Blocking
Capacitors | Inductors | RF Bypass
Capacitors | |----------------|---------------------------------|---------------------------|-----------|-------------------------| | MSW2T-2040-193 | 50 – 1,000 | 0.1 uF | 4.7 uH | 0.1 uF | | MSW2T-2041-193 | 400 – 4,000 | 27 pF | 82 nH | 270 pF | # MSW2T-204X-193 Minimum Reverse Bias Voltage Table | | Frequency of Operation (MHz) | | | | | | |----------------|------------------------------|------|------|-----|-------|-------| | Part Number | 50 | 100 | 200 | 400 | 1,000 | 4,000 | | MSW2T-2040-193 | 125V | 125V | 85V | 55V | 28V | N/A | | MSW2T-2041-193 | N/A | N/A | 125V | 85V | 55V | 28V | Note: N/A denotes an operating frequency outside the normal switch operating frequency range. ¹⁾ $28 \text{ V} \leq \text{V}_{HIGH} \leq 125 \text{V}$ ²⁾ PIN diode min reverse DC voltage (V_{HIGH}) to maintain high resistance state in the OFF PIN diode is determined by RF frequency. Incident power, duty cycle, characteristic impedance and VSWR as well as by characteristics of the diode. The recommended min reverse bias voltage (V_{HIGH}) values are provided in the Min Reverse Bias Voltage Table of this data sheet. # **MSW2T-2040-193 Small Signal Parametric Performance:** MSW2T-2040-193: Insertion Loss MSW2T-2040-193: Isolation #### MSW2T-2040-193: Return Loss # MSW2T-2041-193: Small Signal Parametric Performance: MSW2T-2041-193: Insertion Loss #### MSW2T-2041-193: Isolation #### MSW2T-2041 Return Loss #### **Assembly Instructions** The MSW2T-204X-193 may be attached to the printed circuit card using solder reflow procedures using either RoHS or Sn63/ Pb37 type solders per the Table and Temperature Profile Graph shown below: | Profile Parameter | Sn-Pb Assembly Technique | RoHS Assembly Technique | |--|--------------------------|-------------------------| | Average ramp-up rate $(T_L \text{ to } T_P)$ | 3°C/sec (max) | 3°C/sec (max) | | Preheat | | | | Temp Min (T _{smin}) | 100°C | 150°C | | Temp Max (T _{smax}) | 150°C | 200°C | | Time (min to max) (t _s) | 60 – 120 sec | 60 – 180 sec | | T _{smax} to T _L | | | | Ramp up Rate | | 3°C/sec (max) | | Peak Temp (T _P) | 225°C +0°C / -5°C | 260°C +0°C / -5°C | | Time within 5°C of Actual Peak | | | | Temp (T _P) | 10 to 30 sec | 20 to 40 sec | | Time Maintained Above: | | | | Temp (T _L) | 183°C | 217°C | | Time (t _L) | 60 to 150 sec | 60 to 150 sec | | Ramp Down Rate | 6°C/sec (max) | 6°C/sec (max) | | Time 25°C to T _P | 6 minutes (max) | 8 minutes (max) | # **Solder Re-Flow Time-Temperature Profile** #### MSW2T-204X-193 SP2T Package Outline Drawing Note: Metalized area on backside is the RF, DC and Thermal ground. In user's end application this surface temperature must be managed to meet the power handling requirements. #### **Thermal Design Considerations:** The design of the MWT-204X-193 family of High Power Switches permits the maximum efficiency in thermal management of the PIN Diodes while maintaining extremely high reliability. Optimum switch performance and reliability of the switch can be achieved by the maintaining the base ground surface temperature of less than 85°C. # Recommended RF Circuit Solder Footprint for the MSW2T-204X-193 ### **Part Number Ordering Details:** The MSW2T-204X-193 family of High Power Switches are available in either tube or Tape & Reel format. | Part Number | Packaging | |------------------|-----------------------| | MSW2T-2040-193 | Tube | | MSW2T-2040-193TR | Tape & Reel (250 pcs) | | MSW2T-2041-193 | Tube | | MSW2T-2041-193TR | Tape & Reel (250 pcs) |